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ABSTRACT 

This paper presents a novel, real-time, minimal-latency 
technique for dissolve detection which handles the widely 
varying camera techniques, expertise, and overall video 
quality seen in amateur, semi-professional, and 
professional video footage.  We achieve 88% recall and 
93% precision for dissolve detection.  In contrast, on the 
same data set, at a similar recall rate (87%), DCD has 
more than 3 times the number of false positives, giving a 
precision of only 81% for dissolve detection. 

1. OVERVIEW 

This paper discusses an improved approach for dissolve 
detection. A dissolve gradually cross-fades from the old 
shot’s footage to the new shot’s footage.  The dissolve is 
the most common transition used in post-production.  It is 
also available as an “in-camera” effect on many 
consumer-grade camcorders. We use the results from our 
dissolve detector (along with our cut and fade detectors) 
to support scene-based video browsing and editing [1].   
By placing our detector at the heart of an inexpensive 
consumer product, we have been forced to make it both 
computationally efficient and robust to the widely 
varying camera techniques, expertise, and video quality 
seen in amateur and semi-professional footage.   

This paper does not describe our approach to cut or 
fade detection due to the extensive and successful prior 
art [2,3].  Instead, after a short introduction to dissolve 
detection (Section 2), we describe our new approach 
(Section 3).  Section 4 presents our precision and recall 
for dissolve detection and compares these to the results 
we get using the best published approach.  Section 5 
concludes by summarizing our approach. 

2. BACKGROUND 

Many approaches to dissolve detection have been 
published over the years.  The published approaches to 
dissolve detection fall into 3 broad categories. 

The first category, temporal pattern matching on 
edge-based statistics, detects edges, creates a single 
summary statistic describing the edges in each frame, and 
then matches the evolution of these summary statistics 

over time against fixed, characteristic patterns for 
dissolves.  One example in this category is the edge 
change ratio. With motion compensation to allow edge 
tracking, Zabih [4] uses the percentages of edges that 
appear or disappear between a pair of frames as his 
summary statistic.  Another example in this category is 
the edge-based contrast: Lienhart [5] uses the relative 
number of “strong” to “weak” edges within each frame as 
his summary statistic. For recall levels1 around 60-70%, 
the precision of these approaches is between 8% and 38% 
[5]. 

The second category, temporal pattern matching on 
pixel-level statistics, takes a similar pattern-matching 
approach. Instead of using statistics derived from edge 
detection, it uses simple pixel-level statistics.  A common 
low-level statistic is the within-frame intensity mean and 
standard deviation [3,6].  For dissolve detection, the time 
course of the variance is typically matched to a parabola, 
and the mean is matched to a line.   Using this approach, 
Truong [3] reports equal recall–precision rates of below 
65% on the dissolves in news-program footage. 

The final category of dissolve detection is temporal 
pattern matching using synthetic-dissolve statistics.  Our 
approach, analysis-by-synthesis, falls in this category.  
Our premise is that simple pixel- and edge-based pattern 
matching are inadequate measures of the probability of a 
dissolve, since the patterns that we are trying to match are 
too closely tied to the specific footage combined in the 
dissolve.  Instead, we predict the appearance of a dissolve 
between segments of footage and then compare the 
observed footage to the predicted appearance. 

The only published approach in this category is the 
double chromatic difference (DCD) [7,8].  The first step 
of the DCD segments the video into non-overlapping 
categories of “potential dissolves” and “non-dissolves” 
using edge-based [7] or pixel-level [8] statistics, as 
described above.   The second step of the DCD detector 
uses this segmentation to define one synthetic dissolve 
per potential-dissolve segment, beginning and ending at 
the first and last frame of the segment, respectively. From 
these starting and ending frames, the center frame of a 
synthetic dissolve is formed and compared to the 

                                                           
1 Recall = TP/(TP+FN) and precision = TP/(TP+FP) where 

TP=true positives, FP=false positives, and. FN=false negatives. 
. 



 

Figure 1: Analysis-by-Synthesis Detection:  A nominal-length 
synthetic dissolve is compared to the observed footage.  The 
summary statistic for each comparison (the solid curve) is the 
ratio of how well the synthetic dissolve matches the observed 
footage to how well the start frame matches the end frame. To 
avoid “degenerate” dissolves, if the start and end frames are too 
similar, the summary statistic is taken as one.  Nominal-length 
dissolves with a summary statistic above 4.8 pass.  Overlapping 
nominal-length dissolves are merged into a single detection. In 
this figure, there are 2 true dissolves and 2 detections. 

intervening footage.  If the shape of the comparison error 
over time is bowl shaped, the potential-dissolve segment 
is accepted. 

There are shortcomings with the DCD formulation.  
The first step of the DCD eliminates the vast majority of 
the possible dissolves (most dissolve positions and 
lengths), based on an inadequate measure.  The second 
step of the DCD, with the more powerful testing 
procedure, is presented with an extremely small set of 
potential dissolves to simply accept or reject.  
Furthermore, there is no easy set of thresholds that can be 
used to shift the preponderance of the solution from the 
first step to the second step.  A high threshold in the first 
step results in too many frames being eliminated as part 
of non-dissolve segments.  A low threshold results in true 
dissolves being buried in the middle of much longer 
segments, resulting in a synthetic dissolve unlike the 
buried dissolve.  Finally, even the second DCD step does 
not use the synthetic dissolve to full advantage.  It relies 
on matches against a single frame from that dissolve, 
instead of more robust comparisons using a wider 
window of synthetic frames.  Even with these 
shortcomings, the DCD performance is well above other 
published approaches, giving a precision of better than 
90% for a recall rate near 70% in our tests. 

  As we report in Sections 3 and 4, our analysis-by-
synthesis approach avoids the shortcomings of the DCD. 
First, we do not pre-segment the video: instead, we 
postulate a short dissolve nearly everywhere and move 
the boundaries of the dissolve based on a combination of 
synthetic-dissolve tests.  Second, we use more of the 
synthetic dissolve, thereby increasing the robustness of 
our detection approach.     

3. DISSOLVE-DETECTION APPROACH 

In this section, we describe our approach to dissolve 
detection.  The core of our detector synthesizes a 
synthetic dissolve and compares those synthetic frames 
against the observed footage.  We synthesize the 
synthetic dissolve using a cross fade between the frames 
at the nominal starting and ending time of the potential 
dissolve.  This implicitly assumes that the component 
footage is unchanging during the dissolve and that the 
only source of change is the transition process itself.  As 
we shall see in Section 4, more than half of our false 
negatives can be traced back to this implicit assumption. 
We then use the product of non-linear measures of pixel 
differences and histogram differences [2] to determine 
how close the observed footage is to the expected 
dissolve appearance.  The final summary statistic is then 
the ratio of the difference between the dissolve start and 
end frames to the average difference between the 
synthetic-dissolve frames and the observed footage. 

To avoid estimating the actual start and end indices of 
the dissolve, we use a comparatively short nominal 
dissolve length (e.g., 20 frames) and exploit the linear 
nature of the dissolve transition: using the frames at ta 
and tb to create a synthetic dissolve will accurately model 
the time evolution of any linear dissolve containing those 
two frames.  We can see this using geometric reasoning. 
Consider an idealized dissolve that starts and ends at ts 
and te, where ts ≤ ta < tb ≤ te. Using Is to represent the 
frame at time ts and so on, we can represent all of the 
frames of the dissolve as a straight line segment through 
image space, starting at Is and ending at Ie.  The frames Ia 
and Ib are part of this straight-line segment and the frames 
between times ta and tb lie on the straight-line segment 
between frames Ia and Ib.  This observation means that 
frames from a dissolve are equally well modeled by 
nominal-length dissolves between intermediate frames.  
In fact, for long dissolves that include some amount of 
motion, the intermediate frames are better modeled by a 
sequence of shorter, nominal-length dissolves, since these 
shorter line segments through image space will tend to be 
closer to the actual path through that space. 

After locating nominal length dissolves that pass our 
threshold, we merge together the detected dissolves that 
overlap by more than ½ of the nominal dissolve length.  
This avoids marking longer-than-nominal-length 
dissolves more than once.   

Figure 1 illustrates our core detector approach to 
dissolve detection.   Note that, even when some of the 
nominal-dissolve tests incorrectly fail, due to camera 
flashes and other localized irregularities, the passing 
nominal-length dissolves on either side of the failing tests 
are often correctly merged together.  This happens twice 
in the first dissolve shown in Figure 1. 

The remainder of this section describes techniques that 
we use to make the analysis-by-synthesis approach faster 
than real-time on off-the-shelf processors.  First, all of 



our analyses operate on quarter-sized MPEG1 frames 
(176x120).  This reduces the analysis time by four times. 

We also use two simple, inexpensive tests before the 
synthetic-dissolve creation to reduce the computational 
load.  These simple early-stage tests rely on the general 
production principle that you should not dissolve between 
two shots that look the same.  This means that the 
starting, center, and ending frames must all be 
“sufficiently different” from one another.  To enforce this 
requirement, we compare frames separated by half of a 
nominal dissolve length. The frames are not sufficiently 
different from the frames ½ dissolve earlier and later are 
dropped from the set under consideration.  On the frames 
that do pass, we compare the frames ½ nominal-dissolve-
length before and after the passing frame.  Only the 
frames that pass both the half-dissolve and the full 
dissolve tests are tested as the center location of a 
nominal-length dissolve.  Gating our synthetic-dissolve 
comparisons in this way typically results in a 23% 
reduction in computation and changes the recall/precision 
performance by less than 1%. 

Finally, we further reduce the computational load 
associated with each synthetic dissolve by creating and 
comparing only the middle 50% of each nominal 
dissolve.  This reduces the computational load of this step 
by half, while still providing us robustness by comparing 
many of the frames of the synthetic dissolve.  Since the 
first and last 25% of the synthetic dissolve are very 
similar to the start and end frames, respectively, these 
comparisons provide less discrimination than do the 
center 50% of the synthetic dissolve: comparing only the 
center 50% gives the same recall/precision to within 1% 
as comparing the full dissolve length. 

With all of these optimizations, our system can run 
cut, dissolve, and fade detection in 9.8 ms/frame, on 
average, on a 2 GHz Pentium 4.  Of that, an average of 
2.9 ms/frame is taken up by MPEG1 decoding. 

There are many thresholds within our analysis-by-
synthesis dissolve detection and the optimization surface 
is highly non-linear.  This leaves open the issue of how to 
best set these thresholds.  We have taken the approach of 
setting a few of the basic thresholds (such as the 
histogram bin size used in histogram comparison and 
how dissimilar two gray-level pixels must be to count as 
“different” in the pixel-difference measures [2]) and then 
tuning the remaining parameters using a brute force, 
dense sampling approach.  We densely sample the 
domain of the remaining parameters and pick the 
combination that gives us the best recall and precision on 
our training set.  The time required to densely sample the 
parameter domain is actually quite small. Since we cache 
all of the comparisons that we need, computing the 
approximate false positive/false negative rates is a simple 
a matter of tabulation.  This performance estimate can be 

determined in well under 1 second per combination, over 
the entire training set, so dense sampling of the parameter 
surface is neither difficult nor time consuming. 

4. RESULTS 

In this section, we report our test results on semi-
professional footage, with cuts, dissolves, and fades 
between shots.  For comparison, we also report DCD 
dissolve-detection results on the same database. 

Our test set consists of 7 movies, totaling 5 ½ hours of 
footage, taken by 5 different professional and semi-
professional wedding videographers. Even though this 
footage has been taken by experienced videographers, it 
includes some under-produced footage: several extremely 
fast pans (where a cut would have been more 
appropriate), several places where the scene is completely 
occluded by someone walking or standing in front of the 
camera, and a few sections where the videographer forgot 
the camera was on and taped its swing towards the floor. 

In this 5 ½ hours of footage, the test set contains 351 
cuts, 834 dissolves, and 16 transitions of other types. We 
marked the ground-truth start and end frames for all 834 
dissolves.   We counted false positives and false 
negatives using detected-center-within-true-dissolve and 
one-for-one counting.2  The only exception to this rule is 
for falsely detected dissolves that are centered at or near a 
cut: those false detections are not counted, since any real 
application (including editing-by-browsing [1]) would 
suppress these dissolves after cut detection.  In this paper, 
since we are not describing our cut-detection algorithm, 
we remove cuts and cut-related detections from our 
results.   

For comparison, we implemented a simple version of 
the DCD, as described by Lu [8].  We approximated the 
segmentation steps by fitting a parabola to the within-
frame variance across 7 consecutive frames.  When the 
error in that fit was low enough and the minimum of the 
parabola was within the range of those 7 basis points, we 
extended the end points of the fit forwards and backwards 
in time, until the least-squares error indicated a poor fit.  
We tuned our thresholds on this step to result in 
approximately 80% recall and 40% precision.  We 
favored recall over precision since the precision would 
ultimately increase (through synthetic-dissolve 
rejections). 
                                                           

2 If there are no detected dissolves centered within an actual 
dissolve, that actual dissolve is counted as a false negative.  If 
there is one or more detected dissolves centered within an actual 
dissolve, the first detected dissolve is counted as a true positive 
and the remaining detected dissolves are counted as false 
positives.  Finally, if the center of the detected dissolve falls 
outside of all of the true-dissolve periods, the detected dissolve 
is counted as a false positive. 



Approach TP FN FP Recall Pre-
cision

analysis-by-
synthesis 

738 96 54 88% 93% 

DCD 588 246 43 71% 93% 

single-frame 
synth. test 

722 112 164 87% 81% 

Table 1: Recall and precision 
for our dissolve-detection approach. 

Table 1 reports our dissolve-detection results.  The 
first row of the table shows the results for our proposed 
analysis-by-synthesis detector.  The second line shows 
the results we achieved using our implementation of 
DCD. For the same precision rate (93%), the recall rate 
for DCD is significantly lower than for analysis-by-
synthesis (71% versus 88% recall). 

To determine whether or not the comparison using 
multiple synthetic-dissolve frames improves the 
performance of our detector, we also implemented a 
version of analysis-by-synthesis that, like the last step of 
the DCD, compares just the center frame of the synthetic 
dissolve against all the frames in the hypothesized 
dissolve and then matches that comparison curve to a 
parabola. We avoided introducing an explicit 
segmentation step, such as used in the DCD, by testing 
for dissolves at all indices, using a nominal length 
dissolve (e.g., 20 frames).  Table 1 shows that, for similar 
recall rates (87%), the precision rate suffers when the 
synthesized-to-observed comparison uses only one frame 
of the synthetic dissolve to test against the full length of 
the hypothesized dissolve footage (81% versus 93%). 

The remainder of this section analyzes the dissolve-
detection results for analysis-by-synthesis in more detail. 
We had 54 false positives from our dissolve detector.  Of 
those, 26 could be traced back, at least in part, to the lack 
of motion compensation.  Most of these 26 occurred 
during a pan, dolly or zoom (or a combination of those).   
Some included a pan past a blurry, near-field object.  The 
remaining false positives are due to smooth, extended 
auto-gain or white-balance changes; due to marking a 
single, very long (3 second) transition twice; or (in one 
case) due to marking a different type of gradual transition 
( “de-tiling”).3 

We had 96 false negatives with the analysis-by-
synthesis approach.  Of those, 58 could be traced back, at 
least in part, to the lack of motion estimation: these false 
negatives were on dissolves where one or both of the 

                                                           
3 Since the marked “de-tiling” transition was not an actual 

dissolve and since we are not counting the remaining 15 non-
dissolve, gradual transitions as false negatives, we counted this 
detection as a false positive. 

component segments included a strong camera pan or 
zoom.  The other false negatives were on dissolves 
between two similarly colored sequences, often between 
two pure black-and-white or septa-toned sequences or on 
dissolves that were much shorter than expected (3-5 
frames long). 

5. SUMMARY 

The analysis-by-synthesis dissolve detector outperforms 
previously reported techniques.  Our recall and precision 
for dissolve detection on consumer and semi-professional 
footage are all high enough to support our target 
application of editing-by-browsing software [1]. 

Based on a detailed analysis of our results, it is clear 
that including motion estimation in our system would 
improve our results. More than half of the false positives 
and false negatives can be traced back, at least in part, to 
the effects of uncompensated camera motion or zoom.  
After that, the next step for improvement is a better 
model of auto-gain adjustments. 
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